Film Transport Knob

Baseboard Release Button

Viewfinder Window

Accessory Shoe

Release Button

Camera-Back Lock

Knurled Spool Retaining Disc

Fig. 3
DEAR READER!

In presenting you with this booklet on your purchase of an Agfa Super Isolette Camera, we make one request:

Please devote a little time to the study of the following description of all working details, try out the individual operations with the aid of the illustrations before you take your camera into use.

This piece of advice is in your own interest: The more familiar you are with your camera, the more certain will you be of success from the beginning.

The Agfa Super Isolette completes the wide range of Agfa Isolette models, known the world over; it is the outstanding example of a camera with a combined range and viewfinder in the popular square negative size for discriminating people.

The usual 120 rollfilm in monochrome, Agfacolor Negative and Agfacolor Reversal Film gives 12 exposures 2¾ in. square.

The camera is equipped with the four-element F 3.5 — 75-mm anastigmat Agfa Solinar lens.

Its Synchro-Compur shutter is fully synchronized.

Insofar as the individual operating parts have special names, these will be found on pp. 2–3.
FILM INDICATOR

This device is meant to be an aid to your memory to enable you to remember at any time the kind of film with which your camera happens to be loaded. You should therefore make it a rule to set it immediately after the insertion of a film.

The spring-loaded disc opposite the film transport knob is raised, and rotated until the desired mark is visible in the window, when it is released again.

Types of film indicated:

<table>
<thead>
<tr>
<th>ASA</th>
<th>ASA</th>
<th>ASA</th>
<th>ASA</th>
<th>NT</th>
<th>ND</th>
<th>RT</th>
<th>RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>40</td>
<td>100</td>
<td>160</td>
<td>Col</td>
<td>Col</td>
<td>Col</td>
<td>Col</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>100</td>
<td>160</td>
<td>Col</td>
<td>Col</td>
<td>Col</td>
<td>Col</td>
</tr>
<tr>
<td>R</td>
<td>Reversal film</td>
<td>D</td>
<td>Daylight</td>
<td>T</td>
<td>Tungsten (artificial light)</td>
<td>N</td>
<td>Negative film</td>
</tr>
</tbody>
</table>

Fig. 4
OPENING THE CAMERA

Lateral displacement of the small locking lever unlocks the back of the Super Isolette, which can now be fully opened.

FILM INSERTION

First, the lower spool peg is pulled out by turning the knurled disc to the left (Fig. 6). The standard 120 rollfilm is unwrapped, preferably in subdued light, and the adhesive tape removed; the hand should grip the backing paper of the film firmly right up to the insertion to prevent uncoiling.

Fig. 5
Next, the spool is placed into the fixed upper peg, and allowed to slide into the spool-chamber. The knurled disc is turned to the right again until its projection engages in the spool recess. The tapering end of the backing paper points towards the take-up spool (Fig. 7).
The backing paper is pulled over the film channel up to the take-up spool, and the tapering end inserted into the wider of its two slots. Care should be taken that after a full turn of the transport knob, the backing paper is threaded correctly between the flanges of the empty spool.
The back is now closed and pushed home by pressure of the two thumbs. Care should be taken that the knurled discs in the camera baseplate have been turned to the right as far as possible, as they will be locked by the closed camera back.
After closing the back, the transport knob should be wound on until resistance is felt, or until the knob can no longer be turned in the direction of the arrow. At the same time, the counter window next to the transport knob shows that the counting mechanism has moved from "A" to the number 1, and the film is ready for the first exposure. For each following exposure, the transport knob should be wound on to a stop; numbers 1-12 will then appear automatically in the counter window.

The release button situated next to the transport knob should on no account be pressed during film winding, as this interferes with the counting mechanism.
OPENING THE BASEBOARD

Pressure on the locking button (see arrow) causes the baseboard with the lens panel to slide into the taking position. It is best to tilt the front of the camera obliquely downwards during this operation.

Fig. 11

THE DOUBLE-EXPOSURE PREVENTION DEVICE

The Super Isolette is equipped with an ingenious double and blank exposure prevention device. This means that the release button is locked after each exposure until the next number appears in the window after the transport knob has been wound on. Even if shutter-winding has been forgotten, no release is possible. On the other hand, the film transport is blocked until the shutter has been released. One should therefore make it a point to wind the film on immediately before an exposure.
Shutter Speed Setting Lever
Diaphragm Ring
Index Mark for Stop and Exposure-time Setting
Shutter Winding Lever

Fig. 12

Flash Contact 3 mm. Ø
Distance Scale
Index Mark for Distance-setting and Depth-of-field Scale
THE SHUTTER

Before every exposure it is necessary to set first the desired exposure time and then to wind the shutter (see illustration). The adjustment takes place by rotating the setting levers of the exposure time setting ring with the numbers 1, 2, 5, 10, 25, 50, 100, 250, 500, which stand for fractions of seconds, i.e. 2 = \(\frac{1}{2} \) second, 50 = \(\frac{1}{50} \) second. The desired number is brought opposite the red index mark in the centre of the shutter (\(\frac{1}{50} \) sec. in the illustration). For “Time” exposures from a tripod, use the “B” position. In this position the shutter remains open as long as the shutter release button is depressed; the button has a thread to take a cable release.

The Synchro-Compur shutter of the Agfa Super Isolette is fully synchronized and has a flash contact as well as a synchro-lever for X and M-setting as desired (see fig. p. 2). This mechanism makes full flash synchronization possible even with the fastest shutter speeds. Their action is described in detail under the special heading “Flash Technique” on pp. 20/21.

Please remember the sequence:
First set the exposure time and then wind the shutter; at \(\frac{1}{500} \) sec. this is essential.
STOP—EXPOSURE TIME—DEPTH-OF-FIELD

The setting of the diaphragm with the values

3.5 4 5.6 8 11 16 22

is carried out by rotating the diaphragm ring, when the desired value is brought opposite the red index mark.

STOP: Before choosing the right aperture we have to go into a little more detail about the way it works. The rays coming from the subject first meet the lens aperture which at a large opening lets through a lot, and at a small opening a little, of the light falling on it. The amount of light transmitted is, however, always only a fraction of that reaching the lens. The figures on the aperture scale as listed above are so arranged that, beginning with the opening f/4, each succeeding (higher) number halves the effective light passed.

EXPOSURE TIME: The quantity of light required for the reproduction of a given subject is fixed for the sort of film used. Exposure time and stop are in a fixed relation to one another and it is essential to observe that relation when choosing exposure time and stop. Large stop numbers require long exposure times, small stop numbers short exposure times. If your exposure table indicates e.g. a speed of 1/25 sec. at f/8, but in order to avoid camera shake you want to use 1/50 sec., the diaphragm must transmit correspondingly more light to the film to compensate for the shorter exposure time, and the smaller stop number f/5.6 must be chosen.

14
DEPTH-OF-FIELD: In addition to the exposure, the aperture also determines the zone of sharpness in front of, and behind, the focused distance. Small apertures (stopping down) appreciably increase this zone of sharpness, or depth-of-field. It also increases the farther away the subject is from the camera.

Hence, the depth-of-field depends on the lens stop and the object distance. The exact depth-of-field zones resulting from these various settings are found in the table on p. 23.

In addition, the depth-of-field scale next to the focusing ring with the distance numbers indicates approximate depth-of-field; fig. 12 may serve as an example: A distance of 9 ft. was chosen; the boundary lines to the left and right of the triangular index mark show the sharp zone on the distance scale: at f/11 it extends from 7¼ ft. to 15 ft., at f/5.6 from appr. 8 ft. to 12 ft.

TWO-POINT-FOCUSING: This is the simplest and most convenient way to make practical use of the depth-of-field. The diaphragm ring is set with its red dot between 8 and 11 on the mark, and the distance ring on the red number 9 ft. or 35 ft. The following data should be noted:

<table>
<thead>
<tr>
<th>Stop setting between 8 and 11 (red dot)</th>
<th>Distance ft.</th>
<th>Depth-of-field</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 ft. (close-up)</td>
<td></td>
<td>7 – 14 ft.</td>
</tr>
<tr>
<td>35 ft. (distance)</td>
<td></td>
<td>14 ft. — ∞</td>
</tr>
</tbody>
</table>
EXPOSURE AND RANGE-FINDING

First make sure that stop and shutter speed are set correctly and proceed to find the object distance. This is done with the built-in coupled range-finder in a very simple way. A glance into the viewfinder eyepiece in the back of the camera shows that the viewfinder image is divided: into an overall bright image and a circular central cut-out, which is tinged light-blue. This central (range-finding) image will at first show two laterally displaced images (see fig. p. 17). If the focusing lever is moved as illustrated, complete coincidence of the two central images will result.

Fig. 13
This point automatically indicates the desired sharp focusing of the lens on the object concerned. Comparison of the distance numbers on the distance ring opposite the triangular mark in the centre will confirm this.

The result of the range-finding operation is absolutely reliable and relieves you of the need for judging your distances.

Either now, or before the range-finding, the shutter is wound. The view-finder window of the camera is brought up close enough to the eye so that the view-finder field can be fully seen right to its corners.

The camera is held with both hands as illustrated and the release button pressed home gently and smoothly with the index or middle finger of the right hand. It is important to adopt a firm stance and not to give the camera a lateral tilt.
VIEW-FINDER PARALLAX: The view-finder image shows at a reduced scale the image which will ultimately appear on the negative. In the case of close-ups a small displacement occurs, since the viewfinder lens lies above the camera lens. This has no practical significance beyond distances of 3-6 ft. In this case the camera is slightly raised in the direction of the view-finder.

CLOSING THE CAMERA

Before the camera is closed, the focusing ring must be returned to Infinity. The struts remain locked until this has been done. Attempts to close the camera by force lead to damage. When the focusing ring has been returned to Infinity, both struts will readily give way to even pressure, and the baseboard will return into the camera body where it snaps shut. The camera should not be left with the shutter wound.

Fig. 16
UNLOADING
THE CAMERA

After the 12th exposure the transport knob is turned repeatedly until a resistance is felt. The back is opened—on no account in direct sunlight—by unlocking it as described on p. 6 fig. 5, but not fully. A few further turns of the transport knob will completely wind the end of the backing paper still protruding over the film channel.

The back is now opened fully, the knurled knob of the take-up side gripped (see fig. 17) and turned fully to the left. Slight oblique pressure on the upper spool flange lifts the spool a little, so that it can be easily taken out and removed as shown in the illustration. The spool should be held firmly, secured with adhesive tape at once and placed in a light-tight wrapping.
On opening the camera back, the counting mechanism automatically returns to its starting position A, i.e. it is already at the correct setting for the next film insertion. The only other operation required is the transfer of the empty spool to the take-up side. It is advisable to give the transport knob a short turn until its cog is vertical so that it can be easily and fully inserted in the slotted recess of the empty spool. The lower spool peg is retracted by a short left turn of the knurled disc — the empty spool is depressed — and the peg, by a right turn of the knurled disc, inserted into the round hole of the spool. The camera is now ready to receive the next film.

FLASH TECHNIQUE WITH THE AGFA SUPER ISOLETTE

Any standard flash equipment can be fixed in the accessory shoe (see fig. 3 p. 3). The plug on the cable of the flash unit is inserted into the flash contact of the shutter (see fig. 12, p. 12); this establishes contact between flash unit and shutter.
AGFA CAMERA-WERK AKTIENGESELLSCHAFT
MUECHEN

739 engl. - 0954